3D Molding of Veneers by Mechanical Means
نویسندگان
چکیده
The 3D moldability of veneers, as opposed to the moldability of plastic or other materials, is limited because of the characteristics of wood. By mechanical treatment under appropriate conditions, it is possible to partially modify veneer characteristics. In this study, the intention was to determine the effect of factors influencing the 3D moldability of veneers. Therefore, this study was focused on determining the 3D moldability of veneers with square and circular shape, which were stressed under six moisture content levels (i.e., 0%, 8%, 16%, 20%, 30%, and 100%). To determine the influence of wood species, the results for beech veneers of 0.5-mm thickness were compared to the results for birch veneers of 0.5mm thickness. These sets of samples were stressed with a spherical stamping tool with three different radii of curvature (i.e., 20, 40, and 80 mm). There is currently no standardized method for assessing the 3D moldability of veneers, as opposed to metals (metal sheets). Because of the low moldability of veneers compared to metal materials, Erichsen’s method for assessing the moldability of metal sheets was modified for veneers. The 3D moldability was determined based on maximal deflection of the veneer stressed by the stamping tool before rupture. Based on the established method, the effects of wood species, moisture content of veneers, diameter of stamping tool, and shape of samples on deflection during 3D molding were determined.
منابع مشابه
3D Molding of Veneers by Mechanical and Pneumatic Methods
This paper deals with the influence of selected methods (mechanical and pneumatic) as well as various factors (wood species, moisture content, veneer shape, punch diameter, laminating foil thickness, holding method, plasticizing) on 3D molding of veneers. 3D molding was evaluated on the basis of maximum deflection of birch and beech veneers. Cracks and warping edges were also evaluated in selec...
متن کاملOptimization of the injection molding process of Derlin 500 composite using ANOVA and grey relational analysis
Warpage and shrinkage control are important factors in proving the quality of thin-wall parts in injection modeling process. In the present paper, grey relational analysis was used in order to optimize these two parameters in manufacturing plastic bush of articulated garden tractor. The material used in the plastic bush is Derlin 500. The input parameters in the process were selected according ...
متن کاملExperimental Study of Packing Time and Melt Temperature Effects on Shrinkage of a Thin Sheet Made of Wood-HDPE Composite
Injection molding is one of the most common processes which are used for manufacturing different plastic parts. This method includes 3 continuous steps: filling of the mold, cooling and driving the part out. A wide range of plastic and Non-Plastic materials can be used as raw material in this process. One of the most important advantages of this way of production is that it is very economic. In...
متن کاملExperimental Study of Packing Time and Melt Temperature Effects on Shrinkage of a Thin Sheet Made of Wood-HDPE Composite
Injection molding is one of the most common processes which are used for manufacturing different plastic parts. This method includes 3 continuous steps: filling of the mold, cooling and driving the part out. A wide range of plastic and Non-Plastic materials can be used as raw material in this process. One of the most important advantages of this way of production is that it is very economic. In...
متن کاملOptimizing Rheological Behavior of Steel Feedstocks in Advanced Process of Alloying Powder Injection Molding
The rheological behavior of feedstocks used in powder injection molding technology influences strongly on the final properties of the products. Powder loading is one of the important factors that have a great distribution on rheological behaviors. By using the gas atomized spherical 316L stainless steel powder and the binder of 55% paraffin wax+ 40% polyethylen+ 5% stearic acid, four kinds of f...
متن کامل